TABLE 1-5	The Seven Fundamental Units of Measurement (SI)					
Physical Proper	ty Name of Unit	Symbol				
length	meter	m				
mass	kilogram	kg				
time	second	S				
electric current	ampere	А				
temperature	kelvin	Κ				
luminous intensi	ty candela	cd				
amount of substa	ance mole	mol				

TABLE 1-6	Common Prefixes Used in the SI and Metric Systems				
Prefix	Abbreviation	Meaning	Example		
mega-	М	106	1 megameter (Mm) = 1×10^6 m		
kilo-*	k	10 ³	1 kilometer (km) = 1×10^3 m		
deci-	d	10^{-1}	1 decimeter (dm) = 1×10^{-1} m		
centi-*	с	10^{-2}	1 centimeter (cm) = 1×10^{-2} m		
milli-*	m	10^{-3}	1 milligram (mg) = 1×10^{-3} g		
micro-*	μ^{\dagger}	10^{-6}	1 microgram (μ g) = 1 × 10 ⁻⁶ g		
nano-*	n	10^{-9}	1 nanogram (ng) = 1×10^{-9} g		
pico-	р	10^{-12}	1 picogram (pg) = 1×10^{-12} g		

The prefixes used in the SI and metric systems may be thought of as *multipliers*. For example, the prefix *kilo*-indicates multiplication by 1000 or 10^3 , and *milli*- indicates multiplication by 0.001 or 10^{-3} .

*These prefixes are commonly used in chemistry.

[†]This is the Greek letter μ (pronounced "mew").

[Type here]

TABLE 1-8	Conversion Factors Relating Length, Volume, and Mass (weight) Units						
	Metric	1	English		Metric–English Equivalents		
Length	$\begin{array}{ll} 1 \ \mathrm{km} & = 10^3 \ \mathrm{m} \\ 1 \ \mathrm{cm} & = 10^{-2} \ \mathrm{m} \\ 1 \ \mathrm{mm} & = 10^{-3} \ \mathrm{m} \\ 1 \ \mathrm{nm} & = 10^{-9} \ \mathrm{m} \\ 1 \ \mathrm{\AA} & = 10^{-10} \ \mathrm{m} \end{array}$	1 ft 1 yd 1 mile	= 12 in. = 3 ft = 5280 ft	2.54 cm 39.37 in.* 1.609 km*	= 1 in. = 1 m = 1 mile		
Volume	$ \begin{array}{rcl} 1 \text{ mL} & = 1 \text{ cm}^3 = \\ 1 \text{ m}^3 & = 10^6 \text{ cm}^3 = \\ \end{array} $	0	= 4 qt = 8 pt = 57.75 in. ³ *	1 L 28.32 L	= 1.057 qt^* = 1 ft^{3*}		
Mass	$\begin{array}{ll} 1 \ \text{kg} &= 10^3 \ \text{g} \\ 1 \ \text{mg} &= 10^{-3} \ \text{g} \\ 1 \ \text{metric tonne} &= 10^3 \ \text{kg} \end{array}$	1 lb 1 short tor	= 16 oz = 2000 lb	453.6 g* 1 g 1 metric tonne	= 1 lb = 0.03527 oz* = 1.102 short ton*		

* These conversion factors, unlike the others listed, are inexact. They are quoted to four significant figures, which is ordinarily more than sufficient.

Significant Figure Rules

- 1) Nonzero digits are always significant.
- 2) Zeroes are sometimes significant, and sometimes they are not.
 - a) Zeroes at the beginning of a number (used just to position the decimal point) are never significant.
 - b) Zeroes between nonzero digits are always significant.
 - c) Zeroes at the end of a number that contains a decimal point are always significant.
 - d) Zeroes at the end of a number that does not contain a decimal point may or may not be significant.
- 3) Exact numbers can be considered as having an unlimited number of significant figures. This applies to defined quantities.
- 4) In addition and subtraction, the last digit retained in the sum or difference is determined by the position of the first doubtful digit.
- 5) In multiplication and division, an answer contains no more significant figures than the least number of significant figures used in the operation.